theorem reseq0 (A F: set): $ Dom F i^i A == 0 <-> F |` A == 0 $;
Step | Hyp | Ref | Expression |
1 |
|
bitr4 |
(Dom F i^i A == 0 <-> Dom F C_ Compl A) -> (F |` A == 0 <-> Dom F C_ Compl A) -> (Dom F i^i A == 0 <-> F |` A == 0) |
2 |
|
ineq0 |
Dom F i^i A == 0 <-> Dom F C_ Compl A |
3 |
1, 2 |
ax_mp |
(F |` A == 0 <-> Dom F C_ Compl A) -> (Dom F i^i A == 0 <-> F |` A == 0) |
4 |
|
bitr4 |
(F |` A == 0 <-> F C_ Compl (Xp A _V)) -> (Dom F C_ Compl A <-> F C_ Compl (Xp A _V)) -> (F |` A == 0 <-> Dom F C_ Compl A) |
5 |
|
ineq0 |
F i^i Xp A _V == 0 <-> F C_ Compl (Xp A _V) |
6 |
5 |
conv res |
F |` A == 0 <-> F C_ Compl (Xp A _V) |
7 |
4, 6 |
ax_mp |
(Dom F C_ Compl A <-> F C_ Compl (Xp A _V)) -> (F |` A == 0 <-> Dom F C_ Compl A) |
8 |
|
bitr4 |
(Dom F C_ Compl A <-> F C_ Xp (Compl A) _V) -> (F C_ Compl (Xp A _V) <-> F C_ Xp (Compl A) _V) -> (Dom F C_ Compl A <-> F C_ Compl (Xp A _V)) |
9 |
|
ssdm |
Dom F C_ Compl A <-> F C_ Xp (Compl A) _V |
10 |
8, 9 |
ax_mp |
(F C_ Compl (Xp A _V) <-> F C_ Xp (Compl A) _V) -> (Dom F C_ Compl A <-> F C_ Compl (Xp A _V)) |
11 |
|
sseq2 |
Compl (Xp A _V) == Xp (Compl A) _V -> (F C_ Compl (Xp A _V) <-> F C_ Xp (Compl A) _V) |
12 |
|
cplxpv2 |
Compl (Xp A _V) == Xp (Compl A) _V |
13 |
11, 12 |
ax_mp |
F C_ Compl (Xp A _V) <-> F C_ Xp (Compl A) _V |
14 |
10, 13 |
ax_mp |
Dom F C_ Compl A <-> F C_ Compl (Xp A _V) |
15 |
7, 14 |
ax_mp |
F |` A == 0 <-> Dom F C_ Compl A |
16 |
3, 15 |
ax_mp |
Dom F i^i A == 0 <-> F |` A == 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)