theorem ssrd2 (A B: set) (G: wff) {x y: nat}:
  $ G -> x, y e. A -> x, y e. B $ >
  $ G -> A C_ B $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          ssal2 | 
          A C_ B <-> A. x A. y (x, y e. A -> x, y e. B)  | 
        
        
          | 2 | 
           | 
          hyp h | 
          G -> x, y e. A -> x, y e. B  | 
        
        
          | 3 | 
          2 | 
          iald | 
          G -> A. y (x, y e. A -> x, y e. B)  | 
        
        
          | 4 | 
          3 | 
          iald | 
          G -> A. x A. y (x, y e. A -> x, y e. B)  | 
        
        
          | 5 | 
          1, 4 | 
          sylibr | 
          G -> A C_ B  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)