Theorem zeqmaddd | index | src |

theorem zeqmaddd (G: wff) (a b c d n: nat):
  $ G -> modZ(n): a = b $ >
  $ G -> modZ(n): c = d $ >
  $ G -> modZ(n): a +Z c = b +Z d $;
StepHypRefExpression
1 zeqmtr
modZ(n): a +Z c = b +Z c -> modZ(n): b +Z c = b +Z d -> modZ(n): a +Z c = b +Z d
2 hyp h1
G -> modZ(n): a = b
3 2 zeqmadd1d
G -> modZ(n): a +Z c = b +Z c
4 hyp h2
G -> modZ(n): c = d
5 4 zeqmadd2d
G -> modZ(n): b +Z c = b +Z d
6 1, 3, 5 sylc
G -> modZ(n): a +Z c = b +Z d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)