Theorem zeqmadd1d | index | src |

theorem zeqmadd1d (G: wff) (a b c n: nat):
  $ G -> modZ(n): a = b $ >
  $ G -> modZ(n): a +Z c = b +Z c $;
StepHypRefExpression
1 zeqmadd1
modZ(n): a +Z c = b +Z c <-> modZ(n): a = b
2 hyp h
G -> modZ(n): a = b
3 1, 2 sylibr
G -> modZ(n): a +Z c = b +Z c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)