theorem zeqmadd2d (G: wff) (a b c n: nat): $ G -> modZ(n): b = c $ > $ G -> modZ(n): a +Z b = a +Z c $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zeqmadd2 | modZ(n): a +Z b = a +Z c <-> modZ(n): b = c |
|
2 | hyp h | G -> modZ(n): b = c |
|
3 | 1, 2 | sylibr | G -> modZ(n): a +Z b = a +Z c |