Theorem zeqmtr | index | src |

theorem zeqmtr (a b c n: nat):
  $ modZ(n): a = b -> modZ(n): b = c -> modZ(n): a = c $;
StepHypRefExpression
1 zdvdeq2
b -Z c +Z (a -Z b) = a -Z c -> (b0 n |Z b -Z c +Z (a -Z b) <-> b0 n |Z a -Z c)
2 1 conv zeqm
b -Z c +Z (a -Z b) = a -Z c -> (b0 n |Z b -Z c +Z (a -Z b) <-> modZ(n): a = c)
3 znpncan2
b -Z c +Z (a -Z b) = a -Z c
4 2, 3 ax_mp
b0 n |Z b -Z c +Z (a -Z b) <-> modZ(n): a = c
5 zdvdadd2
b0 n |Z a -Z b -> (b0 n |Z b -Z c <-> b0 n |Z b -Z c +Z (a -Z b))
6 5 conv zeqm
modZ(n): a = b -> (modZ(n): b = c <-> b0 n |Z b -Z c +Z (a -Z b))
7 6 bi1d
modZ(n): a = b -> modZ(n): b = c -> b0 n |Z b -Z c +Z (a -Z b)
8 4, 7 syl6ib
modZ(n): a = b -> modZ(n): b = c -> modZ(n): a = c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)