Theorem zeqmtrd | index | src |

theorem zeqmtrd (G: wff) (a b c n: nat):
  $ G -> modZ(n): a = b $ >
  $ G -> modZ(n): b = c $ >
  $ G -> modZ(n): a = c $;
StepHypRefExpression
1 zeqmtr
modZ(n): a = b -> modZ(n): b = c -> modZ(n): a = c
2 hyp h1
G -> modZ(n): a = b
3 hyp h2
G -> modZ(n): b = c
4 1, 2, 3 sylc
G -> modZ(n): a = c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)