Theorem zeqmcomb | index | src |

theorem zeqmcomb (a b n: nat): $ modZ(n): a = b <-> modZ(n): b = a $;
StepHypRefExpression
1 bitr3
(b0 n |Z -uZ (a -Z b) <-> modZ(n): a = b) -> (b0 n |Z -uZ (a -Z b) <-> modZ(n): b = a) -> (modZ(n): a = b <-> modZ(n): b = a)
2 zdvdneg2
b0 n |Z -uZ (a -Z b) <-> b0 n |Z a -Z b
3 2 conv zeqm
b0 n |Z -uZ (a -Z b) <-> modZ(n): a = b
4 1, 3 ax_mp
(b0 n |Z -uZ (a -Z b) <-> modZ(n): b = a) -> (modZ(n): a = b <-> modZ(n): b = a)
5 zdvdeq2
-uZ (a -Z b) = b -Z a -> (b0 n |Z -uZ (a -Z b) <-> b0 n |Z b -Z a)
6 5 conv zeqm
-uZ (a -Z b) = b -Z a -> (b0 n |Z -uZ (a -Z b) <-> modZ(n): b = a)
7 znegsub
-uZ (a -Z b) = b -Z a
8 6, 7 ax_mp
b0 n |Z -uZ (a -Z b) <-> modZ(n): b = a
9 4, 8 ax_mp
modZ(n): a = b <-> modZ(n): b = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)