theorem zeqmneg (a b n: nat): $ modZ(n): -uZ a = -uZ b <-> modZ(n): a = b $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(modZ(n): -uZ a = -uZ b <-> modZ(n): -uZ b = -uZ a) -> (modZ(n): -uZ b = -uZ a <-> modZ(n): a = b) -> (modZ(n): -uZ a = -uZ b <-> modZ(n): a = b) |
2 |
|
zeqmcomb |
modZ(n): -uZ a = -uZ b <-> modZ(n): -uZ b = -uZ a |
3 |
1, 2 |
ax_mp |
(modZ(n): -uZ b = -uZ a <-> modZ(n): a = b) -> (modZ(n): -uZ a = -uZ b <-> modZ(n): a = b) |
4 |
|
zdvdeq2 |
-uZ b -Z -uZ a = a -Z b -> (b0 n |Z -uZ b -Z -uZ a <-> b0 n |Z a -Z b) |
5 |
4 |
conv zeqm |
-uZ b -Z -uZ a = a -Z b -> (modZ(n): -uZ b = -uZ a <-> modZ(n): a = b) |
6 |
|
znegsub2 |
-uZ b -Z -uZ a = a -Z b |
7 |
5, 6 |
ax_mp |
modZ(n): -uZ b = -uZ a <-> modZ(n): a = b |
8 |
3, 7 |
ax_mp |
modZ(n): -uZ a = -uZ b <-> modZ(n): a = b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)