Theorem znegsub2 | index | src |

theorem znegsub2 (a b: nat): $ -uZ a -Z -uZ b = b -Z a $;
StepHypRefExpression
1 eqtr
-uZ a -Z -uZ b = -uZ a +Z b -> -uZ a +Z b = b -Z a -> -uZ a -Z -uZ b = b -Z a
2 zsubneg2
-uZ a -Z -uZ b = -uZ a +Z b
3 1, 2 ax_mp
-uZ a +Z b = b -Z a -> -uZ a -Z -uZ b = b -Z a
4 zaddcom
-uZ a +Z b = b +Z -uZ a
5 4 conv zsub
-uZ a +Z b = b -Z a
6 3, 5 ax_mp
-uZ a -Z -uZ b = b -Z a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)