Theorem zsubneg2 | index | src |

theorem zsubneg2 (a b: nat): $ a -Z -uZ b = a +Z b $;
StepHypRefExpression
1 zaddeq2
-uZ -uZ b = b -> a +Z -uZ -uZ b = a +Z b
2 1 conv zsub
-uZ -uZ b = b -> a -Z -uZ b = a +Z b
3 znegneg
-uZ -uZ b = b
4 2, 3 ax_mp
a -Z -uZ b = a +Z b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)