theorem zsubneg2 (a b: nat): $ a -Z -uZ b = a +Z b $;
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zaddeq2 | -uZ -uZ b = b -> a +Z -uZ -uZ b = a +Z b | |
| 2 | 1 | conv zsub | -uZ -uZ b = b -> a -Z -uZ b = a +Z b | 
| 3 | znegneg | -uZ -uZ b = b | |
| 4 | 2, 3 | ax_mp | a -Z -uZ b = a +Z b |