Theorem zsubadd | index | src |

theorem zsubadd (a b c: nat): $ a -Z b +Z c = a -Z (b -Z c) $;
StepHypRefExpression
1 eqtr3
a +Z c -Z b = a -Z b +Z c -> a +Z c -Z b = a -Z (b -Z c) -> a -Z b +Z c = a -Z (b -Z c)
2 zaddsub
a +Z c -Z b = a -Z b +Z c
3 1, 2 ax_mp
a +Z c -Z b = a -Z (b -Z c) -> a -Z b +Z c = a -Z (b -Z c)
4 eqtr4
a +Z c -Z b = a +Z (c -Z b) -> a -Z (b -Z c) = a +Z (c -Z b) -> a +Z c -Z b = a -Z (b -Z c)
5 zaddsubass
a +Z c -Z b = a +Z (c -Z b)
6 4, 5 ax_mp
a -Z (b -Z c) = a +Z (c -Z b) -> a +Z c -Z b = a -Z (b -Z c)
7 zsubsub2
a -Z (b -Z c) = a +Z (c -Z b)
8 6, 7 ax_mp
a +Z c -Z b = a -Z (b -Z c)
9 3, 8 ax_mp
a -Z b +Z c = a -Z (b -Z c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)