Theorem zaddpos | index | src |

theorem zaddpos (a b: nat): $ 0 <=Z a -> 0 <=Z b -> 0 <=Z a +Z b $;
StepHypRefExpression
1 zle02eq
0 <=Z a <-> a = b0 (a // 2)
2 zle02eq
0 <=Z b <-> b = b0 (b // 2)
3 zle0b0
0 <=Z b0 (a // 2 + b // 2)
4 zaddb0
b0 (a // 2) +Z b0 (b // 2) = b0 (a // 2 + b // 2)
5 id
a = b0 (a // 2) -> a = b0 (a // 2)
6 5 anwl
a = b0 (a // 2) /\ b = b0 (b // 2) -> a = b0 (a // 2)
7 id
b = b0 (b // 2) -> b = b0 (b // 2)
8 7 anwr
a = b0 (a // 2) /\ b = b0 (b // 2) -> b = b0 (b // 2)
9 6, 8 zaddeqd
a = b0 (a // 2) /\ b = b0 (b // 2) -> a +Z b = b0 (a // 2) +Z b0 (b // 2)
10 4, 9 syl6eq
a = b0 (a // 2) /\ b = b0 (b // 2) -> a +Z b = b0 (a // 2 + b // 2)
11 10 zleeq2d
a = b0 (a // 2) /\ b = b0 (b // 2) -> (0 <=Z a +Z b <-> 0 <=Z b0 (a // 2 + b // 2))
12 3, 11 mpbiri
a = b0 (a // 2) /\ b = b0 (b // 2) -> 0 <=Z a +Z b
13 12 exp
a = b0 (a // 2) -> b = b0 (b // 2) -> 0 <=Z a +Z b
14 2, 13 syl5bi
a = b0 (a // 2) -> 0 <=Z b -> 0 <=Z a +Z b
15 1, 14 sylbi
0 <=Z a -> 0 <=Z b -> 0 <=Z a +Z b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)