theorem xpss1 (A B C: set): $ A C_ B -> Xp A C C_ Xp B C $;
Step | Hyp | Ref | Expression |
1 |
|
elxp |
p e. Xp A C <-> fst p e. A /\ snd p e. C |
2 |
|
elxp |
p e. Xp B C <-> fst p e. B /\ snd p e. C |
3 |
1, 2 |
imeqi |
p e. Xp A C -> p e. Xp B C <-> fst p e. A /\ snd p e. C -> fst p e. B /\ snd p e. C |
4 |
|
ssel |
A C_ B -> fst p e. A -> fst p e. B |
5 |
4 |
anim1d |
A C_ B -> fst p e. A /\ snd p e. C -> fst p e. B /\ snd p e. C |
6 |
3, 5 |
sylibr |
A C_ B -> p e. Xp A C -> p e. Xp B C |
7 |
6 |
iald |
A C_ B -> A. p (p e. Xp A C -> p e. Xp B C) |
8 |
7 |
conv subset |
A C_ B -> Xp A C C_ Xp B C |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)