Theorem anim1d | index | src |

theorem anim1d (a b c d: wff): $ a -> b -> c $ > $ a -> b /\ d -> c /\ d $;
StepHypRefExpression
1 hyp h
a -> b -> c
2 idd
a -> d -> d
3 1, 2 animd
a -> b /\ d -> c /\ d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)