theorem xpss2 (A B C: set): $ B C_ C -> Xp A B C_ Xp A C $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | elxp | p e. Xp A B <-> fst p e. A /\ snd p e. B | 
        
          | 2 |  | elxp | p e. Xp A C <-> fst p e. A /\ snd p e. C | 
        
          | 3 | 1, 2 | imeqi | p e. Xp A B -> p e. Xp A C <-> fst p e. A /\ snd p e. B -> fst p e. A /\ snd p e. C | 
        
          | 4 |  | ssel | B C_ C -> snd p e. B -> snd p e. C | 
        
          | 5 | 4 | anim2d | B C_ C -> fst p e. A /\ snd p e. B -> fst p e. A /\ snd p e. C | 
        
          | 6 | 3, 5 | sylibr | B C_ C -> p e. Xp A B -> p e. Xp A C | 
        
          | 7 | 6 | iald | B C_ C -> A. p (p e. Xp A B -> p e. Xp A C) | 
        
          | 8 | 7 | conv subset | B C_ C -> Xp A B C_ Xp A C | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)