Theorem takeeqd | index | src |

theorem takeeqd (_G: wff) (_l1 _l2 _n1 _n2: nat):
  $ _G -> _l1 = _l2 $ >
  $ _G -> _n1 = _n2 $ >
  $ _G -> take _l1 _n1 = take _l2 _n2 $;
StepHypRefExpression
1 eqidd
_G -> i = i
2 hyp _lh
_G -> _l1 = _l2
3 1, 2 ntheqd
_G -> nth i _l1 = nth i _l2
4 eqidd
_G -> 1 = 1
5 3, 4 subeqd
_G -> nth i _l1 - 1 = nth i _l2 - 1
6 5 lameqd
_G -> \ i, nth i _l1 - 1 == \ i, nth i _l2 - 1
7 2 leneqd
_G -> len _l1 = len _l2
8 hyp _nh
_G -> _n1 = _n2
9 7, 8 mineqd
_G -> min (len _l1) _n1 = min (len _l2) _n2
10 6, 9 lfneqd
_G -> lfn (\ i, nth i _l1 - 1) (min (len _l1) _n1) = lfn (\ i, nth i _l2 - 1) (min (len _l2) _n2)
11 10 conv take
_G -> take _l1 _n1 = take _l2 _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)