theorem sublistAteqd (_G: wff) (_n1 _n2 _L11 _L12 _L21 _L22: nat):
$ _G -> _n1 = _n2 $ >
$ _G -> _L11 = _L12 $ >
$ _G -> _L21 = _L22 $ >
$ _G -> (sublistAt _n1 _L11 _L21 <-> sublistAt _n2 _L12 _L22) $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _L1h |
_G -> _L11 = _L12 |
2 |
|
eqidd |
_G -> l = l |
3 |
|
hyp _L2h |
_G -> _L21 = _L22 |
4 |
|
eqidd |
_G -> r = r |
5 |
3, 4 |
appendeqd |
_G -> _L21 ++ r = _L22 ++ r |
6 |
2, 5 |
appendeqd |
_G -> l ++ _L21 ++ r = l ++ _L22 ++ r |
7 |
1, 6 |
eqeqd |
_G -> (_L11 = l ++ _L21 ++ r <-> _L12 = l ++ _L22 ++ r) |
8 |
|
eqidd |
_G -> len l = len l |
9 |
|
hyp _nh |
_G -> _n1 = _n2 |
10 |
8, 9 |
eqeqd |
_G -> (len l = _n1 <-> len l = _n2) |
11 |
7, 10 |
aneqd |
_G -> (_L11 = l ++ _L21 ++ r /\ len l = _n1 <-> _L12 = l ++ _L22 ++ r /\ len l = _n2) |
12 |
11 |
exeqd |
_G -> (E. r (_L11 = l ++ _L21 ++ r /\ len l = _n1) <-> E. r (_L12 = l ++ _L22 ++ r /\ len l = _n2)) |
13 |
12 |
exeqd |
_G -> (E. l E. r (_L11 = l ++ _L21 ++ r /\ len l = _n1) <-> E. l E. r (_L12 = l ++ _L22 ++ r /\ len l = _n2)) |
14 |
13 |
conv sublistAt |
_G -> (sublistAt _n1 _L11 _L21 <-> sublistAt _n2 _L12 _L22) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)