Theorem sublistAteq | index | src |

theorem sublistAteq (_n1 _n2 _L11 _L12 _L21 _L22: nat):
  $ _n1 = _n2 ->
    _L11 = _L12 ->
    _L21 = _L22 ->
    (sublistAt _n1 _L11 _L21 <-> sublistAt _n2 _L12 _L22) $;
StepHypRefExpression
1 anl
_n1 = _n2 /\ _L11 = _L12 -> _n1 = _n2
2 1 anwl
_n1 = _n2 /\ _L11 = _L12 /\ _L21 = _L22 -> _n1 = _n2
3 anr
_n1 = _n2 /\ _L11 = _L12 -> _L11 = _L12
4 3 anwl
_n1 = _n2 /\ _L11 = _L12 /\ _L21 = _L22 -> _L11 = _L12
5 anr
_n1 = _n2 /\ _L11 = _L12 /\ _L21 = _L22 -> _L21 = _L22
6 2, 4, 5 sublistAteqd
_n1 = _n2 /\ _L11 = _L12 /\ _L21 = _L22 -> (sublistAt _n1 _L11 _L21 <-> sublistAt _n2 _L12 _L22)
7 6 exp
_n1 = _n2 /\ _L11 = _L12 -> _L21 = _L22 -> (sublistAt _n1 _L11 _L21 <-> sublistAt _n2 _L12 _L22)
8 7 exp
_n1 = _n2 -> _L11 = _L12 -> _L21 = _L22 -> (sublistAt _n1 _L11 _L21 <-> sublistAt _n2 _L12 _L22)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)