Theorem sublistAteq1d | index | src |

theorem sublistAteq1d (_G: wff) (_n1 _n2 L1 L2: nat):
  $ _G -> _n1 = _n2 $ >
  $ _G -> (sublistAt _n1 L1 L2 <-> sublistAt _n2 L1 L2) $;
StepHypRefExpression
1 hyp _h
_G -> _n1 = _n2
2 eqidd
_G -> L1 = L1
3 eqidd
_G -> L2 = L2
4 1, 2, 3 sublistAteqd
_G -> (sublistAt _n1 L1 L2 <-> sublistAt _n2 L1 L2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)