Theorem sepeqd | index | src |

theorem sepeqd (_G: wff) (_n1 _n2: nat) (_A1 _A2: set):
  $ _G -> _n1 = _n2 $ >
  $ _G -> _A1 == _A2 $ >
  $ _G -> sep _n1 _A1 = sep _n2 _A2 $;
StepHypRefExpression
1 hyp _nh
_G -> _n1 = _n2
2 1 nseqd
_G -> _n1 == _n2
3 hyp _Ah
_G -> _A1 == _A2
4 2, 3 ineqd
_G -> _n1 i^i _A1 == _n2 i^i _A2
5 4 lowereqd
_G -> lower (_n1 i^i _A1) = lower (_n2 i^i _A2)
6 5 conv sep
_G -> sep _n1 _A1 = sep _n2 _A2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)