theorem sepeqd (_G: wff) (_n1 _n2: nat) (_A1 _A2: set):
  $ _G -> _n1 = _n2 $ >
  $ _G -> _A1 == _A2 $ >
  $ _G -> sep _n1 _A1 = sep _n2 _A2 $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          hyp _nh | 
          _G -> _n1 = _n2  | 
        
        
          | 2 | 
          1 | 
          nseqd | 
          _G -> _n1 == _n2  | 
        
        
          | 3 | 
           | 
          hyp _Ah | 
          _G -> _A1 == _A2  | 
        
        
          | 4 | 
          2, 3 | 
          ineqd | 
          _G -> _n1 i^i _A1 == _n2 i^i _A2  | 
        
        
          | 5 | 
          4 | 
          lowereqd | 
          _G -> lower (_n1 i^i _A1) = lower (_n2 i^i _A2)  | 
        
        
          | 6 | 
          5 | 
          conv sep | 
          _G -> sep _n1 _A1 = sep _n2 _A2  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)