Theorem sepeq | index | src |

theorem sepeq (_n1 _n2: nat) (_A1 _A2: set):
  $ _n1 = _n2 -> _A1 == _A2 -> sep _n1 _A1 = sep _n2 _A2 $;
StepHypRefExpression
1 anl
_n1 = _n2 /\ _A1 == _A2 -> _n1 = _n2
2 anr
_n1 = _n2 /\ _A1 == _A2 -> _A1 == _A2
3 1, 2 sepeqd
_n1 = _n2 /\ _A1 == _A2 -> sep _n1 _A1 = sep _n2 _A2
4 3 exp
_n1 = _n2 -> _A1 == _A2 -> sep _n1 _A1 = sep _n2 _A2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)