Theorem ltcons2 | index | src |

theorem ltcons2 (a b c: nat): $ b < c <-> a : b < a : c $;
StepHypRefExpression
1 bitr
(b < c <-> a, b < a, c) -> (a, b < a, c <-> a : b < a : c) -> (b < c <-> a : b < a : c)
2 ltpr2
b < c <-> a, b < a, c
3 1, 2 ax_mp
(a, b < a, c <-> a : b < a : c) -> (b < c <-> a : b < a : c)
4 ltsuc
a, b < a, c <-> suc (a, b) < suc (a, c)
5 4 conv cons
a, b < a, c <-> a : b < a : c
6 3, 5 ax_mp
b < c <-> a : b < a : c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)