Theorem rlreceqd | index | src |

theorem rlreceqd (_G: wff) (_z1 _z2: nat) (_S1 _S2: set) (_n1 _n2: nat):
  $ _G -> _z1 = _z2 $ >
  $ _G -> _S1 == _S2 $ >
  $ _G -> _n1 = _n2 $ >
  $ _G -> rlrec _z1 _S1 _n1 = rlrec _z2 _S2 _n2 $;
StepHypRefExpression
1 hyp _zh
_G -> _z1 = _z2
2 hyp _Sh
_G -> _S1 == _S2
3 eqidd
_G -> rev l, a, ih = rev l, a, ih
4 2, 3 appeqd
_G -> _S1 @ (rev l, a, ih) = _S2 @ (rev l, a, ih)
5 4 lameqd
_G -> \ ih, _S1 @ (rev l, a, ih) == \ ih, _S2 @ (rev l, a, ih)
6 5 slameqd
_G -> (\\ l, \ ih, _S1 @ (rev l, a, ih)) == (\\ l, \ ih, _S2 @ (rev l, a, ih))
7 6 slameqd
_G -> (\\ a, \\ l, \ ih, _S1 @ (rev l, a, ih)) == (\\ a, \\ l, \ ih, _S2 @ (rev l, a, ih))
8 hyp _nh
_G -> _n1 = _n2
9 8 reveqd
_G -> rev _n1 = rev _n2
10 1, 7, 9 lreceqd
_G -> lrec _z1 (\\ a, \\ l, \ ih, _S1 @ (rev l, a, ih)) (rev _n1) = lrec _z2 (\\ a, \\ l, \ ih, _S2 @ (rev l, a, ih)) (rev _n2)
11 10 conv rlrec
_G -> rlrec _z1 _S1 _n1 = rlrec _z2 _S2 _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)