theorem reveqd (_G: wff) (_l1 _l2: nat):
  $ _G -> _l1 = _l2 $ >
  $ _G -> rev _l1 = rev _l2 $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | eqidd | _G -> 0 = 0 | 
        
          | 2 |  | eqsidd | _G -> (\\ a, \\ z, \ ih, ih |> a) == (\\ a, \\ z, \ ih, ih |> a) | 
        
          | 3 |  | hyp _lh | _G -> _l1 = _l2 | 
        
          | 4 | 1, 2, 3 | lreceqd | _G -> lrec 0 (\\ a, \\ z, \ ih, ih |> a) _l1 = lrec 0 (\\ a, \\ z, \ ih, ih |> a) _l2 | 
        
          | 5 | 4 | conv rev | _G -> rev _l1 = rev _l2 | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)