Theorem reveqd | index | src |

theorem reveqd (_G: wff) (_l1 _l2: nat):
  $ _G -> _l1 = _l2 $ >
  $ _G -> rev _l1 = rev _l2 $;
StepHypRefExpression
1 eqidd
_G -> 0 = 0
2 eqsidd
_G -> (\\ a, \\ z, \ ih, ih |> a) == (\\ a, \\ z, \ ih, ih |> a)
3 hyp _lh
_G -> _l1 = _l2
4 1, 2, 3 lreceqd
_G -> lrec 0 (\\ a, \\ z, \ ih, ih |> a) _l1 = lrec 0 (\\ a, \\ z, \ ih, ih |> a) _l2
5 4 conv rev
_G -> rev _l1 = rev _l2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)