theorem reveqd (_G: wff) (_l1 _l2: nat):
$ _G -> _l1 = _l2 $ >
$ _G -> rev _l1 = rev _l2 $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_G -> 0 = 0 |
2 |
|
eqsidd |
_G -> (\\ a, \\ z, \ ih, ih |> a) == (\\ a, \\ z, \ ih, ih |> a) |
3 |
|
hyp _lh |
_G -> _l1 = _l2 |
4 |
1, 2, 3 |
lreceqd |
_G -> lrec 0 (\\ a, \\ z, \ ih, ih |> a) _l1 = lrec 0 (\\ a, \\ z, \ ih, ih |> a) _l2 |
5 |
4 |
conv rev |
_G -> rev _l1 = rev _l2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)