theorem resun (A B F: set): $ F |` A u. B == (F |` A) u. (F |` B) $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | eqstr | F |` A u. B == F i^i (Xp A _V u. Xp B _V) -> F i^i (Xp A _V u. Xp B _V) == (F |` A) u. (F |` B) -> F |` A u. B == (F |` A) u. (F |` B) | 
        
          | 2 |  | ineq2 | Xp (A u. B) _V == Xp A _V u. Xp B _V -> F i^i Xp (A u. B) _V == F i^i (Xp A _V u. Xp B _V) | 
        
          | 3 | 2 | conv res | Xp (A u. B) _V == Xp A _V u. Xp B _V -> F |` A u. B == F i^i (Xp A _V u. Xp B _V) | 
        
          | 4 |  | xpundi | Xp (A u. B) _V == Xp A _V u. Xp B _V | 
        
          | 5 | 3, 4 | ax_mp | F |` A u. B == F i^i (Xp A _V u. Xp B _V) | 
        
          | 6 | 1, 5 | ax_mp | F i^i (Xp A _V u. Xp B _V) == (F |` A) u. (F |` B) -> F |` A u. B == (F |` A) u. (F |` B) | 
        
          | 7 |  | indi | F i^i (Xp A _V u. Xp B _V) == F i^i Xp A _V u. F i^i Xp B _V | 
        
          | 8 | 7 | conv res | F i^i (Xp A _V u. Xp B _V) == (F |` A) u. (F |` B) | 
        
          | 9 | 6, 8 | ax_mp | F |` A u. B == (F |` A) u. (F |` B) | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)