Theorem unres | index | src |

theorem unres (A F G: set): $ F u. G |` A == (F |` A) u. (G |` A) $;
StepHypRefExpression
1 indir
(F u. G) i^i Xp A _V == F i^i Xp A _V u. G i^i Xp A _V
2 1 conv res
F u. G |` A == (F |` A) u. (G |` A)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)