theorem indir (A B C: set): $ (A u. B) i^i C == A i^i C u. B i^i C $;
Step | Hyp | Ref | Expression |
1 |
|
eqstr4 |
(A u. B) i^i C == C i^i (A u. B) -> A i^i C u. B i^i C == C i^i (A u. B) -> (A u. B) i^i C == A i^i C u. B i^i C |
2 |
|
incom |
(A u. B) i^i C == C i^i (A u. B) |
3 |
1, 2 |
ax_mp |
A i^i C u. B i^i C == C i^i (A u. B) -> (A u. B) i^i C == A i^i C u. B i^i C |
4 |
|
eqstr4 |
A i^i C u. B i^i C == C i^i A u. C i^i B -> C i^i (A u. B) == C i^i A u. C i^i B -> A i^i C u. B i^i C == C i^i (A u. B) |
5 |
|
uneq |
A i^i C == C i^i A -> B i^i C == C i^i B -> A i^i C u. B i^i C == C i^i A u. C i^i B |
6 |
|
incom |
A i^i C == C i^i A |
7 |
5, 6 |
ax_mp |
B i^i C == C i^i B -> A i^i C u. B i^i C == C i^i A u. C i^i B |
8 |
|
incom |
B i^i C == C i^i B |
9 |
7, 8 |
ax_mp |
A i^i C u. B i^i C == C i^i A u. C i^i B |
10 |
4, 9 |
ax_mp |
C i^i (A u. B) == C i^i A u. C i^i B -> A i^i C u. B i^i C == C i^i (A u. B) |
11 |
|
indi |
C i^i (A u. B) == C i^i A u. C i^i B |
12 |
10, 11 |
ax_mp |
A i^i C u. B i^i C == C i^i (A u. B) |
13 |
3, 12 |
ax_mp |
(A u. B) i^i C == A i^i C u. B i^i C |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)