theorem indir (A B C: set): $ (A u. B) i^i C == A i^i C u. B i^i C $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | eqstr4 | (A u. B) i^i C == C i^i (A u. B) -> A i^i C u. B i^i C == C i^i (A u. B) -> (A u. B) i^i C == A i^i C u. B i^i C | 
        
          | 2 |  | incom | (A u. B) i^i C == C i^i (A u. B) | 
        
          | 3 | 1, 2 | ax_mp | A i^i C u. B i^i C == C i^i (A u. B) -> (A u. B) i^i C == A i^i C u. B i^i C | 
        
          | 4 |  | eqstr4 | A i^i C u. B i^i C == C i^i A u. C i^i B -> C i^i (A u. B) == C i^i A u. C i^i B -> A i^i C u. B i^i C == C i^i (A u. B) | 
        
          | 5 |  | uneq | A i^i C == C i^i A -> B i^i C == C i^i B -> A i^i C u. B i^i C == C i^i A u. C i^i B | 
        
          | 6 |  | incom | A i^i C == C i^i A | 
        
          | 7 | 5, 6 | ax_mp | B i^i C == C i^i B -> A i^i C u. B i^i C == C i^i A u. C i^i B | 
        
          | 8 |  | incom | B i^i C == C i^i B | 
        
          | 9 | 7, 8 | ax_mp | A i^i C u. B i^i C == C i^i A u. C i^i B | 
        
          | 10 | 4, 9 | ax_mp | C i^i (A u. B) == C i^i A u. C i^i B -> A i^i C u. B i^i C == C i^i (A u. B) | 
        
          | 11 |  | indi | C i^i (A u. B) == C i^i A u. C i^i B | 
        
          | 12 | 10, 11 | ax_mp | A i^i C u. B i^i C == C i^i (A u. B) | 
        
          | 13 | 3, 12 | ax_mp | (A u. B) i^i C == A i^i C u. B i^i C | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)