theorem eqres (A F: set): $ Dom F C_ A <-> F |` A == F $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(Dom F C_ A <-> F C_ Xp A _V) -> (F C_ Xp A _V <-> F |` A == F) -> (Dom F C_ A <-> F |` A == F) |
2 |
|
ssdm |
Dom F C_ A <-> F C_ Xp A _V |
3 |
1, 2 |
ax_mp |
(F C_ Xp A _V <-> F |` A == F) -> (Dom F C_ A <-> F |` A == F) |
4 |
|
eqin1 |
F C_ Xp A _V <-> F i^i Xp A _V == F |
5 |
4 |
conv res |
F C_ Xp A _V <-> F |` A == F |
6 |
3, 5 |
ax_mp |
Dom F C_ A <-> F |` A == F |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)