theorem eqres (A F: set): $ Dom F C_ A <-> F |` A == F $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bitr | (Dom F C_ A <-> F C_ Xp A _V) -> (F C_ Xp A _V <-> F |` A == F) -> (Dom F C_ A <-> F |` A == F) | 
        
          | 2 |  | ssdm | Dom F C_ A <-> F C_ Xp A _V | 
        
          | 3 | 1, 2 | ax_mp | (F C_ Xp A _V <-> F |` A == F) -> (Dom F C_ A <-> F |` A == F) | 
        
          | 4 |  | eqin1 | F C_ Xp A _V <-> F i^i Xp A _V == F | 
        
          | 5 | 4 | conv res | F C_ Xp A _V <-> F |` A == F | 
        
          | 6 | 3, 5 | ax_mp | Dom F C_ A <-> F |` A == F | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)