Theorem pimeq2a | index | src |

theorem pimeq2a {x: nat} (p q1 q2: wff x):
  $ A. x (p -> (q1 <-> q2)) -> ((P. x p -> q1) <-> (P. x p -> q2)) $;
StepHypRefExpression
1 aleq
A. x (p -> q1 <-> p -> q2) -> (A. x (p -> q1) <-> A. x (p -> q2))
2 imeq2a
(p -> (q1 <-> q2)) -> (p -> q1 <-> p -> q2)
3 2 alimi
A. x (p -> (q1 <-> q2)) -> A. x (p -> q1 <-> p -> q2)
4 1, 3 syl
A. x (p -> (q1 <-> q2)) -> (A. x (p -> q1) <-> A. x (p -> q2))
5 4 aneq2d
A. x (p -> (q1 <-> q2)) -> (E. x p /\ A. x (p -> q1) <-> E. x p /\ A. x (p -> q2))
6 5 conv pim
A. x (p -> (q1 <-> q2)) -> ((P. x p -> q1) <-> (P. x p -> q2))

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)