Theorem pimim2d | index | src |

theorem pimim2d (G: wff) {x: nat} (p q1 q2: wff x):
  $ G -> q1 -> q2 $ >
  $ G -> (P. x p -> q1) -> (P. x p -> q2) $;
StepHypRefExpression
1 pimim2
A. x (q1 -> q2) -> (P. x p -> q1) -> (P. x p -> q2)
2 hyp h
G -> q1 -> q2
3 2 iald
G -> A. x (q1 -> q2)
4 1, 3 syl
G -> (P. x p -> q1) -> (P. x p -> q2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)