Theorem minle1 | index | src |

theorem minle1 (a b: nat): $ min a b <= a $;
StepHypRefExpression
1 eqle
min a b = a -> min a b <= a
2 ifpos
a < b -> if (a < b) a b = a
3 2 conv min
a < b -> min a b = a
4 1, 3 syl
a < b -> min a b <= a
5 ifneg
~a < b -> if (a < b) a b = b
6 5 conv min
~a < b -> min a b = b
7 6 leeq1d
~a < b -> (min a b <= a <-> b <= a)
8 bi2
(b <= a <-> ~a < b) -> ~a < b -> b <= a
9 lenlt
b <= a <-> ~a < b
10 8, 9 ax_mp
~a < b -> b <= a
11 7, 10 mpbird
~a < b -> min a b <= a
12 4, 11 cases
min a b <= a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, add0, addS)