Theorem minle2 | index | src |

theorem minle2 (a b: nat): $ min a b <= b $;
StepHypRefExpression
1 leeq1
min b a = min a b -> (min b a <= b <-> min a b <= b)
2 mincom
min b a = min a b
3 1, 2 ax_mp
min b a <= b <-> min a b <= b
4 minle1
min b a <= b
5 3, 4 mpbi
min a b <= b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)