theorem lemin (a b c: nat): $ a <= min b c <-> a <= b /\ a <= c $;
| Step | Hyp | Ref | Expression |
| 1 |
|
minle1 |
min b c <= b |
| 2 |
|
letr |
a <= min b c -> min b c <= b -> a <= b |
| 3 |
1, 2 |
mpi |
a <= min b c -> a <= b |
| 4 |
|
minle2 |
min b c <= c |
| 5 |
|
letr |
a <= min b c -> min b c <= c -> a <= c |
| 6 |
4, 5 |
mpi |
a <= min b c -> a <= c |
| 7 |
3, 6 |
iand |
a <= min b c -> a <= b /\ a <= c |
| 8 |
|
ifpos |
b < c -> if (b < c) b c = b |
| 9 |
8 |
conv min |
b < c -> min b c = b |
| 10 |
9 |
leeq2d |
b < c -> (a <= min b c <-> a <= b) |
| 11 |
10 |
anwr |
a <= b /\ a <= c /\ b < c -> (a <= min b c <-> a <= b) |
| 12 |
|
anll |
a <= b /\ a <= c /\ b < c -> a <= b |
| 13 |
11, 12 |
mpbird |
a <= b /\ a <= c /\ b < c -> a <= min b c |
| 14 |
|
ifneg |
~b < c -> if (b < c) b c = c |
| 15 |
14 |
conv min |
~b < c -> min b c = c |
| 16 |
15 |
leeq2d |
~b < c -> (a <= min b c <-> a <= c) |
| 17 |
16 |
anwr |
a <= b /\ a <= c /\ ~b < c -> (a <= min b c <-> a <= c) |
| 18 |
|
anlr |
a <= b /\ a <= c /\ ~b < c -> a <= c |
| 19 |
17, 18 |
mpbird |
a <= b /\ a <= c /\ ~b < c -> a <= min b c |
| 20 |
13, 19 |
casesda |
a <= b /\ a <= c -> a <= min b c |
| 21 |
7, 20 |
ibii |
a <= min b c <-> a <= b /\ a <= c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)