theorem lemin (a b c: nat): $ a <= min b c <-> a <= b /\ a <= c $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          minle1 | 
          min b c <= b  | 
        
        
          | 2 | 
           | 
          letr | 
          a <= min b c -> min b c <= b -> a <= b  | 
        
        
          | 3 | 
          1, 2 | 
          mpi | 
          a <= min b c -> a <= b  | 
        
        
          | 4 | 
           | 
          minle2 | 
          min b c <= c  | 
        
        
          | 5 | 
           | 
          letr | 
          a <= min b c -> min b c <= c -> a <= c  | 
        
        
          | 6 | 
          4, 5 | 
          mpi | 
          a <= min b c -> a <= c  | 
        
        
          | 7 | 
          3, 6 | 
          iand | 
          a <= min b c -> a <= b /\ a <= c  | 
        
        
          | 8 | 
           | 
          ifpos | 
          b < c -> if (b < c) b c = b  | 
        
        
          | 9 | 
          8 | 
          conv min | 
          b < c -> min b c = b  | 
        
        
          | 10 | 
          9 | 
          leeq2d | 
          b < c -> (a <= min b c <-> a <= b)  | 
        
        
          | 11 | 
          10 | 
          anwr | 
          a <= b /\ a <= c /\ b < c -> (a <= min b c <-> a <= b)  | 
        
        
          | 12 | 
           | 
          anll | 
          a <= b /\ a <= c /\ b < c -> a <= b  | 
        
        
          | 13 | 
          11, 12 | 
          mpbird | 
          a <= b /\ a <= c /\ b < c -> a <= min b c  | 
        
        
          | 14 | 
           | 
          ifneg | 
          ~b < c -> if (b < c) b c = c  | 
        
        
          | 15 | 
          14 | 
          conv min | 
          ~b < c -> min b c = c  | 
        
        
          | 16 | 
          15 | 
          leeq2d | 
          ~b < c -> (a <= min b c <-> a <= c)  | 
        
        
          | 17 | 
          16 | 
          anwr | 
          a <= b /\ a <= c /\ ~b < c -> (a <= min b c <-> a <= c)  | 
        
        
          | 18 | 
           | 
          anlr | 
          a <= b /\ a <= c /\ ~b < c -> a <= c  | 
        
        
          | 19 | 
          17, 18 | 
          mpbird | 
          a <= b /\ a <= c /\ ~b < c -> a <= min b c  | 
        
        
          | 20 | 
          13, 19 | 
          casesda | 
          a <= b /\ a <= c -> a <= min b c  | 
        
        
          | 21 | 
          7, 20 | 
          ibii | 
          a <= min b c <-> a <= b /\ a <= c  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      add0,
      addS)