theorem mapeqd (_G: wff) (_F1 _F2: set) (_l1 _l2: nat):
$ _G -> _F1 == _F2 $ >
$ _G -> _l1 = _l2 $ >
$ _G -> map _F1 _l1 = map _F2 _l2 $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_G -> 0 = 0 |
2 |
|
hyp _Fh |
_G -> _F1 == _F2 |
3 |
|
eqidd |
_G -> a = a |
4 |
2, 3 |
appeqd |
_G -> _F1 @ a = _F2 @ a |
5 |
|
eqidd |
_G -> ih = ih |
6 |
4, 5 |
conseqd |
_G -> _F1 @ a : ih = _F2 @ a : ih |
7 |
6 |
lameqd |
_G -> \ ih, _F1 @ a : ih == \ ih, _F2 @ a : ih |
8 |
7 |
slameqd |
_G -> (\\ z, \ ih, _F1 @ a : ih) == (\\ z, \ ih, _F2 @ a : ih) |
9 |
8 |
slameqd |
_G -> (\\ a, \\ z, \ ih, _F1 @ a : ih) == (\\ a, \\ z, \ ih, _F2 @ a : ih) |
10 |
|
hyp _lh |
_G -> _l1 = _l2 |
11 |
1, 9, 10 |
lreceqd |
_G -> lrec 0 (\\ a, \\ z, \ ih, _F1 @ a : ih) _l1 = lrec 0 (\\ a, \\ z, \ ih, _F2 @ a : ih) _l2 |
12 |
11 |
conv map |
_G -> map _F1 _l1 = map _F2 _l2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)