theorem mapeq (_F1 _F2: set) (_l1 _l2: nat):
$ _F1 == _F2 -> _l1 = _l2 -> map _F1 _l1 = map _F2 _l2 $;
Step | Hyp | Ref | Expression |
1 |
|
anl |
_F1 == _F2 /\ _l1 = _l2 -> _F1 == _F2 |
2 |
|
anr |
_F1 == _F2 /\ _l1 = _l2 -> _l1 = _l2 |
3 |
1, 2 |
mapeqd |
_F1 == _F2 /\ _l1 = _l2 -> map _F1 _l1 = map _F2 _l2 |
4 |
3 |
exp |
_F1 == _F2 -> _l1 = _l2 -> map _F1 _l1 = map _F2 _l2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)