theorem lmemmap (F: set) {a: nat} (b l: nat):
$ b IN map F l <-> E. a (a IN l /\ b = F @ a) $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(b IN map F l <-> E. a1 nth a1 (map F l) = suc b) ->
(E. a1 nth a1 (map F l) = suc b <-> E. a (a IN l /\ b = F @ a)) ->
(b IN map F l <-> E. a (a IN l /\ b = F @ a)) |
2 |
|
lmemnth |
b IN map F l <-> E. a1 nth a1 (map F l) = suc b |
3 |
1, 2 |
ax_mp |
(E. a1 nth a1 (map F l) = suc b <-> E. a (a IN l /\ b = F @ a)) -> (b IN map F l <-> E. a (a IN l /\ b = F @ a)) |
4 |
|
bitr4 |
(E. a1 nth a1 (map F l) = suc b <-> E. a1 E. a (nth a1 l = suc a /\ b = F @ a)) ->
(E. a (a IN l /\ b = F @ a) <-> E. a1 E. a (nth a1 l = suc a /\ b = F @ a)) ->
(E. a1 nth a1 (map F l) = suc b <-> E. a (a IN l /\ b = F @ a)) |
5 |
|
mapnthb |
nth a1 (map F l) = suc b <-> E. a (nth a1 l = suc a /\ b = F @ a) |
6 |
5 |
exeqi |
E. a1 nth a1 (map F l) = suc b <-> E. a1 E. a (nth a1 l = suc a /\ b = F @ a) |
7 |
4, 6 |
ax_mp |
(E. a (a IN l /\ b = F @ a) <-> E. a1 E. a (nth a1 l = suc a /\ b = F @ a)) -> (E. a1 nth a1 (map F l) = suc b <-> E. a (a IN l /\ b = F @ a)) |
8 |
|
lmemnth |
a IN l <-> E. a1 nth a1 l = suc a |
9 |
8 |
biexan1i |
a IN l /\ b = F @ a <-> E. a1 (nth a1 l = suc a /\ b = F @ a) |
10 |
9 |
biexexi |
E. a (a IN l /\ b = F @ a) <-> E. a1 E. a (nth a1 l = suc a /\ b = F @ a) |
11 |
7, 10 |
ax_mp |
E. a1 nth a1 (map F l) = suc b <-> E. a (a IN l /\ b = F @ a) |
12 |
3, 11 |
ax_mp |
b IN map F l <-> E. a (a IN l /\ b = F @ a) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)