theorem lmemmap (F: set) {a: nat} (b l: nat):
  $ b IN map F l <-> E. a (a IN l /\ b = F @ a) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          bitr | 
          (b IN map F l <-> E. a1 nth a1 (map F l) = suc b) ->
  (E. a1 nth a1 (map F l) = suc b <-> E. a (a IN l /\ b = F @ a)) ->
  (b IN map F l <-> E. a (a IN l /\ b = F @ a))  | 
        
        
          | 2 | 
           | 
          lmemnth | 
          b IN map F l <-> E. a1 nth a1 (map F l) = suc b  | 
        
        
          | 3 | 
          1, 2 | 
          ax_mp | 
          (E. a1 nth a1 (map F l) = suc b <-> E. a (a IN l /\ b = F @ a)) -> (b IN map F l <-> E. a (a IN l /\ b = F @ a))  | 
        
        
          | 4 | 
           | 
          bitr4 | 
          (E. a1 nth a1 (map F l) = suc b <-> E. a1 E. a (nth a1 l = suc a /\ b = F @ a)) ->
  (E. a (a IN l /\ b = F @ a) <-> E. a1 E. a (nth a1 l = suc a /\ b = F @ a)) ->
  (E. a1 nth a1 (map F l) = suc b <-> E. a (a IN l /\ b = F @ a))  | 
        
        
          | 5 | 
           | 
          mapnthb | 
          nth a1 (map F l) = suc b <-> E. a (nth a1 l = suc a /\ b = F @ a)  | 
        
        
          | 6 | 
          5 | 
          exeqi | 
          E. a1 nth a1 (map F l) = suc b <-> E. a1 E. a (nth a1 l = suc a /\ b = F @ a)  | 
        
        
          | 7 | 
          4, 6 | 
          ax_mp | 
          (E. a (a IN l /\ b = F @ a) <-> E. a1 E. a (nth a1 l = suc a /\ b = F @ a)) -> (E. a1 nth a1 (map F l) = suc b <-> E. a (a IN l /\ b = F @ a))  | 
        
        
          | 8 | 
           | 
          lmemnth | 
          a IN l <-> E. a1 nth a1 l = suc a  | 
        
        
          | 9 | 
          8 | 
          biexan1i | 
          a IN l /\ b = F @ a <-> E. a1 (nth a1 l = suc a /\ b = F @ a)  | 
        
        
          | 10 | 
          9 | 
          biexexi | 
          E. a (a IN l /\ b = F @ a) <-> E. a1 E. a (nth a1 l = suc a /\ b = F @ a)  | 
        
        
          | 11 | 
          7, 10 | 
          ax_mp | 
          E. a1 nth a1 (map F l) = suc b <-> E. a (a IN l /\ b = F @ a)  | 
        
        
          | 12 | 
          3, 11 | 
          ax_mp | 
          b IN map F l <-> E. a (a IN l /\ b = F @ a)  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)