theorem ljoineqd (_G: wff) (_L1 _L2: nat):
  $ _G -> _L1 = _L2 $ >
  $ _G -> ljoin _L1 = ljoin _L2 $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          eqidd | 
          _G -> 0 = 0  | 
        
        
          | 2 | 
           | 
          eqsidd | 
          _G -> (\\ a, \\ z, \ ih, a ++ ih) == (\\ a, \\ z, \ ih, a ++ ih)  | 
        
        
          | 3 | 
           | 
          hyp _Lh | 
          _G -> _L1 = _L2  | 
        
        
          | 4 | 
          1, 2, 3 | 
          lreceqd | 
          _G -> lrec 0 (\\ a, \\ z, \ ih, a ++ ih) _L1 = lrec 0 (\\ a, \\ z, \ ih, a ++ ih) _L2  | 
        
        
          | 5 | 
          4 | 
          conv ljoin | 
          _G -> ljoin _L1 = ljoin _L2  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)