Theorem ljoineqd | index | src |

theorem ljoineqd (_G: wff) (_L1 _L2: nat):
  $ _G -> _L1 = _L2 $ >
  $ _G -> ljoin _L1 = ljoin _L2 $;
StepHypRefExpression
1 eqidd
_G -> 0 = 0
2 eqsidd
_G -> (\\ a, \\ z, \ ih, a ++ ih) == (\\ a, \\ z, \ ih, a ++ ih)
3 hyp _Lh
_G -> _L1 = _L2
4 1, 2, 3 lreceqd
_G -> lrec 0 (\\ a, \\ z, \ ih, a ++ ih) _L1 = lrec 0 (\\ a, \\ z, \ ih, a ++ ih) _L2
5 4 conv ljoin
_G -> ljoin _L1 = ljoin _L2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)