Theorem biexan1i | index | src |

theorem biexan1i (c: wff) {x: nat} (a b: wff x):
  $ a <-> E. x b $ >
  $ a /\ c <-> E. x (b /\ c) $;
StepHypRefExpression
1 hyp h
a <-> E. x b
2 1 a1i
c -> (a <-> E. x b)
3 2 biexan1a
a /\ c <-> E. x (b /\ c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)