theorem biexan1a (c: wff) {x: nat} (a b: wff x):
$ c -> (a <-> E. x b) $ >
$ a /\ c <-> E. x (b /\ c) $;
Step | Hyp | Ref | Expression |
1 |
|
bitr4 |
(a /\ c <-> E. x b /\ c) -> (E. x (b /\ c) <-> E. x b /\ c) -> (a /\ c <-> E. x (b /\ c)) |
2 |
|
aneq1a |
(c -> (a <-> E. x b)) -> (a /\ c <-> E. x b /\ c) |
3 |
|
hyp h |
c -> (a <-> E. x b) |
4 |
2, 3 |
ax_mp |
a /\ c <-> E. x b /\ c |
5 |
1, 4 |
ax_mp |
(E. x (b /\ c) <-> E. x b /\ c) -> (a /\ c <-> E. x (b /\ c)) |
6 |
|
exan2 |
E. x (b /\ c) <-> E. x b /\ c |
7 |
5, 6 |
ax_mp |
a /\ c <-> E. x (b /\ c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5)