theorem biexan2a (a: wff) {x: nat} (b c: wff x):
  $ a -> (b <-> E. x c) $ >
  $ a /\ b <-> E. x (a /\ c) $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bitr4 | (a /\ b <-> a /\ E. x c) -> (E. x (a /\ c) <-> a /\ E. x c) -> (a /\ b <-> E. x (a /\ c)) | 
        
          | 2 |  | aneq2a | (a -> (b <-> E. x c)) -> (a /\ b <-> a /\ E. x c) | 
        
          | 3 |  | hyp h | a -> (b <-> E. x c) | 
        
          | 4 | 2, 3 | ax_mp | a /\ b <-> a /\ E. x c | 
        
          | 5 | 1, 4 | ax_mp | (E. x (a /\ c) <-> a /\ E. x c) -> (a /\ b <-> E. x (a /\ c)) | 
        
          | 6 |  | exan1 | E. x (a /\ c) <-> a /\ E. x c | 
        
          | 7 | 5, 6 | ax_mp | a /\ b <-> E. x (a /\ c) | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5)