theorem biexan2a (a: wff) {x: nat} (b c: wff x):
$ a -> (b <-> E. x c) $ >
$ a /\ b <-> E. x (a /\ c) $;
Step | Hyp | Ref | Expression |
1 |
|
bitr4 |
(a /\ b <-> a /\ E. x c) -> (E. x (a /\ c) <-> a /\ E. x c) -> (a /\ b <-> E. x (a /\ c)) |
2 |
|
aneq2a |
(a -> (b <-> E. x c)) -> (a /\ b <-> a /\ E. x c) |
3 |
|
hyp h |
a -> (b <-> E. x c) |
4 |
2, 3 |
ax_mp |
a /\ b <-> a /\ E. x c |
5 |
1, 4 |
ax_mp |
(E. x (a /\ c) <-> a /\ E. x c) -> (a /\ b <-> E. x (a /\ c)) |
6 |
|
exan1 |
E. x (a /\ c) <-> a /\ E. x c |
7 |
5, 6 |
ax_mp |
a /\ b <-> E. x (a /\ c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5)