Theorem biexan2i | index | src |

theorem biexan2i (a: wff) {x: nat} (b c: wff x):
  $ b <-> E. x c $ >
  $ a /\ b <-> E. x (a /\ c) $;
StepHypRefExpression
1 hyp h
b <-> E. x c
2 1 a1i
a -> (b <-> E. x c)
3 2 biexan2a
a /\ b <-> E. x (a /\ c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)