theorem funcT (A B F: set) (x: nat): $ func F A B /\ x e. A -> F @ x e. B $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | funcrn | func F A B -> Ran F C_ B | 
        
          | 2 | 1 | anwl | func F A B /\ x e. A -> Ran F C_ B | 
        
          | 3 |  | appelrn | isfun F -> x e. Dom F -> F @ x e. Ran F | 
        
          | 4 |  | funcisf | func F A B -> isfun F | 
        
          | 5 | 4 | anwl | func F A B /\ x e. A -> isfun F | 
        
          | 6 |  | funcdm | func F A B -> Dom F == A | 
        
          | 7 | 6 | eleq2d | func F A B -> (x e. Dom F <-> x e. A) | 
        
          | 8 | 7 | bi2d | func F A B -> x e. A -> x e. Dom F | 
        
          | 9 | 8 | imp | func F A B /\ x e. A -> x e. Dom F | 
        
          | 10 | 3, 5, 9 | sylc | func F A B /\ x e. A -> F @ x e. Ran F | 
        
          | 11 | 2, 10 | sseld | func F A B /\ x e. A -> F @ x e. B | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)