theorem funcT (A B F: set) (x: nat): $ func F A B /\ x e. A -> F @ x e. B $;
Step | Hyp | Ref | Expression |
1 |
|
funcrn |
func F A B -> Ran F C_ B |
2 |
1 |
anwl |
func F A B /\ x e. A -> Ran F C_ B |
3 |
|
appelrn |
isfun F -> x e. Dom F -> F @ x e. Ran F |
4 |
|
funcisf |
func F A B -> isfun F |
5 |
4 |
anwl |
func F A B /\ x e. A -> isfun F |
6 |
|
funcdm |
func F A B -> Dom F == A |
7 |
6 |
eleq2d |
func F A B -> (x e. Dom F <-> x e. A) |
8 |
7 |
bi2d |
func F A B -> x e. A -> x e. Dom F |
9 |
8 |
imp |
func F A B /\ x e. A -> x e. Dom F |
10 |
3, 5, 9 |
sylc |
func F A B /\ x e. A -> F @ x e. Ran F |
11 |
2, 10 |
sseld |
func F A B /\ x e. A -> F @ x e. B |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)