Theorem funcfin | index | src |

theorem funcfin (A B F: set):
  $ func F A B -> finite A -> finite B -> finite F $;
StepHypRefExpression
1 xpfin
finite A -> finite B -> finite (Xp A B)
2 funcssxp
func F A B -> F C_ Xp A B
3 finss
F C_ Xp A B -> finite (Xp A B) -> finite F
4 2, 3 rsyl
func F A B -> finite (Xp A B) -> finite F
5 4 imim2d
func F A B -> (finite B -> finite (Xp A B)) -> finite B -> finite F
6 1, 5 syl5
func F A B -> finite A -> finite B -> finite F

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)