theorem func02 (B F: set): $ func F 0 B <-> F == 0 $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(func F 0 B <-> F == 0 /\ Ran F C_ B) -> (F == 0 /\ Ran F C_ B <-> F == 0) -> (func F 0 B <-> F == 0) |
2 |
|
bitr |
(isfun F /\ Dom F == 0 <-> isfun F /\ F == 0) -> (isfun F /\ F == 0 <-> F == 0) -> (isfun F /\ Dom F == 0 <-> F == 0) |
3 |
|
dmeq0 |
Dom F == 0 <-> F == 0 |
4 |
3 |
aneq2i |
isfun F /\ Dom F == 0 <-> isfun F /\ F == 0 |
5 |
2, 4 |
ax_mp |
(isfun F /\ F == 0 <-> F == 0) -> (isfun F /\ Dom F == 0 <-> F == 0) |
6 |
|
bian1a |
(F == 0 -> isfun F) -> (isfun F /\ F == 0 <-> F == 0) |
7 |
|
isf0 |
isfun 0 |
8 |
|
isfeq |
F == 0 -> (isfun F <-> isfun 0) |
9 |
7, 8 |
mpbiri |
F == 0 -> isfun F |
10 |
6, 9 |
ax_mp |
isfun F /\ F == 0 <-> F == 0 |
11 |
5, 10 |
ax_mp |
isfun F /\ Dom F == 0 <-> F == 0 |
12 |
11 |
aneq1i |
isfun F /\ Dom F == 0 /\ Ran F C_ B <-> F == 0 /\ Ran F C_ B |
13 |
12 |
conv func |
func F 0 B <-> F == 0 /\ Ran F C_ B |
14 |
1, 13 |
ax_mp |
(F == 0 /\ Ran F C_ B <-> F == 0) -> (func F 0 B <-> F == 0) |
15 |
|
bian2a |
(F == 0 -> Ran F C_ B) -> (F == 0 /\ Ran F C_ B <-> F == 0) |
16 |
|
ss01 |
0 C_ B |
17 |
|
rneq0 |
Ran F == 0 <-> F == 0 |
18 |
|
sseq1 |
Ran F == 0 -> (Ran F C_ B <-> 0 C_ B) |
19 |
17, 18 |
sylbir |
F == 0 -> (Ran F C_ B <-> 0 C_ B) |
20 |
16, 19 |
mpbiri |
F == 0 -> Ran F C_ B |
21 |
15, 20 |
ax_mp |
F == 0 /\ Ran F C_ B <-> F == 0 |
22 |
14, 21 |
ax_mp |
func F 0 B <-> F == 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)