| Step | Hyp | Ref | Expression |
| 1 |
|
bitr3 |
(F == 0 /\ func F A 0 <-> func F A 0) -> (F == 0 /\ func F A 0 <-> F == 0 /\ A == 0) -> (func F A 0 <-> F == 0 /\ A == 0) |
| 2 |
|
bian1a |
(func F A 0 -> F == 0) -> (F == 0 /\ func F A 0 <-> func F A 0) |
| 3 |
|
rneq0 |
Ran F == 0 <-> F == 0 |
| 4 |
|
ss02 |
Ran F C_ 0 <-> Ran F == 0 |
| 5 |
|
funcrn |
func F A 0 -> Ran F C_ 0 |
| 6 |
4, 5 |
sylib |
func F A 0 -> Ran F == 0 |
| 7 |
3, 6 |
sylib |
func F A 0 -> F == 0 |
| 8 |
2, 7 |
ax_mp |
F == 0 /\ func F A 0 <-> func F A 0 |
| 9 |
1, 8 |
ax_mp |
(F == 0 /\ func F A 0 <-> F == 0 /\ A == 0) -> (func F A 0 <-> F == 0 /\ A == 0) |
| 10 |
|
aneq2a |
(F == 0 -> (func F A 0 <-> A == 0)) -> (F == 0 /\ func F A 0 <-> F == 0 /\ A == 0) |
| 11 |
|
bitr |
(isfun 0 /\ Dom 0 == A /\ Ran 0 C_ 0 <-> isfun 0 /\ Dom 0 == A) -> (isfun 0 /\ Dom 0 == A <-> A == 0) -> (isfun 0 /\ Dom 0 == A /\ Ran 0 C_ 0 <-> A == 0) |
| 12 |
|
bian2 |
Ran 0 C_ 0 -> (isfun 0 /\ Dom 0 == A /\ Ran 0 C_ 0 <-> isfun 0 /\ Dom 0 == A) |
| 13 |
|
eqss |
Ran 0 == 0 -> Ran 0 C_ 0 |
| 14 |
|
rn0 |
Ran 0 == 0 |
| 15 |
13, 14 |
ax_mp |
Ran 0 C_ 0 |
| 16 |
12, 15 |
ax_mp |
isfun 0 /\ Dom 0 == A /\ Ran 0 C_ 0 <-> isfun 0 /\ Dom 0 == A |
| 17 |
11, 16 |
ax_mp |
(isfun 0 /\ Dom 0 == A <-> A == 0) -> (isfun 0 /\ Dom 0 == A /\ Ran 0 C_ 0 <-> A == 0) |
| 18 |
|
bitr |
(isfun 0 /\ Dom 0 == A <-> Dom 0 == A) -> (Dom 0 == A <-> A == 0) -> (isfun 0 /\ Dom 0 == A <-> A == 0) |
| 19 |
|
bian1 |
isfun 0 -> (isfun 0 /\ Dom 0 == A <-> Dom 0 == A) |
| 20 |
|
isf0 |
isfun 0 |
| 21 |
19, 20 |
ax_mp |
isfun 0 /\ Dom 0 == A <-> Dom 0 == A |
| 22 |
18, 21 |
ax_mp |
(Dom 0 == A <-> A == 0) -> (isfun 0 /\ Dom 0 == A <-> A == 0) |
| 23 |
|
bitr |
(Dom 0 == A <-> 0 == A) -> (0 == A <-> A == 0) -> (Dom 0 == A <-> A == 0) |
| 24 |
|
eqseq1 |
Dom 0 == 0 -> (Dom 0 == A <-> 0 == A) |
| 25 |
|
dm0 |
Dom 0 == 0 |
| 26 |
24, 25 |
ax_mp |
Dom 0 == A <-> 0 == A |
| 27 |
23, 26 |
ax_mp |
(0 == A <-> A == 0) -> (Dom 0 == A <-> A == 0) |
| 28 |
|
eqscomb |
0 == A <-> A == 0 |
| 29 |
27, 28 |
ax_mp |
Dom 0 == A <-> A == 0 |
| 30 |
22, 29 |
ax_mp |
isfun 0 /\ Dom 0 == A <-> A == 0 |
| 31 |
17, 30 |
ax_mp |
isfun 0 /\ Dom 0 == A /\ Ran 0 C_ 0 <-> A == 0 |
| 32 |
|
funceq1 |
F == 0 -> (func F A 0 <-> func 0 A 0) |
| 33 |
32 |
conv func |
F == 0 -> (func F A 0 <-> isfun 0 /\ Dom 0 == A /\ Ran 0 C_ 0) |
| 34 |
31, 33 |
syl6bb |
F == 0 -> (func F A 0 <-> A == 0) |
| 35 |
10, 34 |
ax_mp |
F == 0 /\ func F A 0 <-> F == 0 /\ A == 0 |
| 36 |
9, 35 |
ax_mp |
func F A 0 <-> F == 0 /\ A == 0 |