theorem rneq0 (A: set): $ Ran A == 0 <-> A == 0 $;
Step | Hyp | Ref | Expression |
1 |
|
bitr3 |
(Ran A C_ 0 <-> Ran A == 0) -> (Ran A C_ 0 <-> A == 0) -> (Ran A == 0 <-> A == 0) |
2 |
|
ss02 |
Ran A C_ 0 <-> Ran A == 0 |
3 |
1, 2 |
ax_mp |
(Ran A C_ 0 <-> A == 0) -> (Ran A == 0 <-> A == 0) |
4 |
|
bitr |
(Ran A C_ 0 <-> A C_ Xp _V 0) -> (A C_ Xp _V 0 <-> A == 0) -> (Ran A C_ 0 <-> A == 0) |
5 |
|
ssrn |
Ran A C_ 0 <-> A C_ Xp _V 0 |
6 |
4, 5 |
ax_mp |
(A C_ Xp _V 0 <-> A == 0) -> (Ran A C_ 0 <-> A == 0) |
7 |
|
bitr |
(A C_ Xp _V 0 <-> A C_ 0) -> (A C_ 0 <-> A == 0) -> (A C_ Xp _V 0 <-> A == 0) |
8 |
|
sseq2 |
Xp _V 0 == 0 -> (A C_ Xp _V 0 <-> A C_ 0) |
9 |
|
xp02 |
Xp _V 0 == 0 |
10 |
8, 9 |
ax_mp |
A C_ Xp _V 0 <-> A C_ 0 |
11 |
7, 10 |
ax_mp |
(A C_ 0 <-> A == 0) -> (A C_ Xp _V 0 <-> A == 0) |
12 |
|
ss02 |
A C_ 0 <-> A == 0 |
13 |
11, 12 |
ax_mp |
A C_ Xp _V 0 <-> A == 0 |
14 |
6, 13 |
ax_mp |
Ran A C_ 0 <-> A == 0 |
15 |
3, 14 |
ax_mp |
Ran A == 0 <-> A == 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)