| Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          elex2 | 
          l1, l2 e. ex2 R <-> len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R)  | 
        
        
          | 2 | 
           | 
          elex2 | 
          l1, l2 e. ex2 S <-> len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S)  | 
        
        
          | 3 | 
          1, 2 | 
          imeqi | 
          l1, l2 e. ex2 R -> l1, l2 e. ex2 S <->
  len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) ->
    len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S) | 
        
        
          | 4 | 
           | 
          exim | 
          A. x (E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) -> E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S)) ->
  E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) ->
  E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S)  | 
        
        
          | 5 | 
           | 
          exim | 
          A. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R -> nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S) ->
  E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) ->
  E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S)  | 
        
        
          | 6 | 
           | 
          anim2a | 
          (nth n l1 = suc x /\ nth n l2 = suc y -> x, y e. R -> x, y e. S) ->
  nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R ->
  nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S  | 
        
        
          | 7 | 
           | 
          imim1 | 
          (nth n l1 = suc x /\ nth n l2 = suc y -> x IN l1 /\ y IN l2) ->
  (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) ->
  nth n l1 = suc x /\ nth n l2 = suc y ->
  x, y e. R ->
  x, y e. S  | 
        
        
          | 8 | 
           | 
          anim | 
          (nth n l1 = suc x -> x IN l1) -> (nth n l2 = suc y -> y IN l2) -> nth n l1 = suc x /\ nth n l2 = suc y -> x IN l1 /\ y IN l2  | 
        
        
          | 9 | 
           | 
          nthlmem | 
          nth n l1 = suc x -> x IN l1  | 
        
        
          | 10 | 
          8, 9 | 
          ax_mp | 
          (nth n l2 = suc y -> y IN l2) -> nth n l1 = suc x /\ nth n l2 = suc y -> x IN l1 /\ y IN l2  | 
        
        
          | 11 | 
           | 
          nthlmem | 
          nth n l2 = suc y -> y IN l2  | 
        
        
          | 12 | 
          10, 11 | 
          ax_mp | 
          nth n l1 = suc x /\ nth n l2 = suc y -> x IN l1 /\ y IN l2  | 
        
        
          | 13 | 
          7, 12 | 
          ax_mp | 
          (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) -> nth n l1 = suc x /\ nth n l2 = suc y -> x, y e. R -> x, y e. S  | 
        
        
          | 14 | 
          6, 13 | 
          syl | 
          (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) -> nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R -> nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S  | 
        
        
          | 15 | 
          14 | 
          alimi | 
          A. y (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) ->
  A. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R -> nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S)  | 
        
        
          | 16 | 
          5, 15 | 
          syl | 
          A. y (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) ->
  E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) ->
  E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S)  | 
        
        
          | 17 | 
          16 | 
          alimi | 
          A. x A. y (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) ->
  A. x (E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) -> E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S))  | 
        
        
          | 18 | 
          4, 17 | 
          syl | 
          A. x A. y (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) ->
  E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) ->
  E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S)  | 
        
        
          | 19 | 
          18 | 
          eximd | 
          A. x A. y (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) ->
  E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) ->
  E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S)  | 
        
        
          | 20 | 
          19 | 
          anim2d | 
          A. x A. y (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) ->
  len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) ->
  len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S)  | 
        
        
          | 21 | 
          3, 20 | 
          sylibr | 
          A. x A. y (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) -> l1, l2 e. ex2 R -> l1, l2 e. ex2 S  |