| Step | Hyp | Ref | Expression |
| 1 |
|
elex2 |
l1, l2 e. ex2 R <-> len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) |
| 2 |
|
elex2 |
l1, l2 e. ex2 S <-> len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S) |
| 3 |
1, 2 |
imeqi |
l1, l2 e. ex2 R -> l1, l2 e. ex2 S <->
len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) ->
len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S) |
| 4 |
|
exim |
A. x (E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) -> E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S)) ->
E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) ->
E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S) |
| 5 |
|
exim |
A. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R -> nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S) ->
E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) ->
E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S) |
| 6 |
|
anim2a |
(nth n l1 = suc x /\ nth n l2 = suc y -> x, y e. R -> x, y e. S) ->
nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R ->
nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S |
| 7 |
|
imim1 |
(nth n l1 = suc x /\ nth n l2 = suc y -> x IN l1 /\ y IN l2) ->
(x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) ->
nth n l1 = suc x /\ nth n l2 = suc y ->
x, y e. R ->
x, y e. S |
| 8 |
|
anim |
(nth n l1 = suc x -> x IN l1) -> (nth n l2 = suc y -> y IN l2) -> nth n l1 = suc x /\ nth n l2 = suc y -> x IN l1 /\ y IN l2 |
| 9 |
|
nthlmem |
nth n l1 = suc x -> x IN l1 |
| 10 |
8, 9 |
ax_mp |
(nth n l2 = suc y -> y IN l2) -> nth n l1 = suc x /\ nth n l2 = suc y -> x IN l1 /\ y IN l2 |
| 11 |
|
nthlmem |
nth n l2 = suc y -> y IN l2 |
| 12 |
10, 11 |
ax_mp |
nth n l1 = suc x /\ nth n l2 = suc y -> x IN l1 /\ y IN l2 |
| 13 |
7, 12 |
ax_mp |
(x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) -> nth n l1 = suc x /\ nth n l2 = suc y -> x, y e. R -> x, y e. S |
| 14 |
6, 13 |
syl |
(x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) -> nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R -> nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S |
| 15 |
14 |
alimi |
A. y (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) ->
A. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R -> nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S) |
| 16 |
5, 15 |
syl |
A. y (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) ->
E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) ->
E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S) |
| 17 |
16 |
alimi |
A. x A. y (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) ->
A. x (E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) -> E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S)) |
| 18 |
4, 17 |
syl |
A. x A. y (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) ->
E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) ->
E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S) |
| 19 |
18 |
eximd |
A. x A. y (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) ->
E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) ->
E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S) |
| 20 |
19 |
anim2d |
A. x A. y (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) ->
len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) ->
len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. S) |
| 21 |
3, 20 |
sylibr |
A. x A. y (x IN l1 /\ y IN l2 -> x, y e. R -> x, y e. S) -> l1, l2 e. ex2 R -> l1, l2 e. ex2 S |