Theorem nthlmem | index | src |

theorem nthlmem (a l n: nat): $ nth n l = suc a -> a IN l $;
StepHypRefExpression
1 lmemnth
a IN l <-> E. a1 nth a1 l = suc a
2 ntheq1
a1 = n -> nth a1 l = nth n l
3 2 eqeq1d
a1 = n -> (nth a1 l = suc a <-> nth n l = suc a)
4 3 iexe
nth n l = suc a -> E. a1 nth a1 l = suc a
5 1, 4 sylibr
nth n l = suc a -> a IN l

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)