Theorem allnth | index | src |

theorem allnth (A: set) (l: nat) {n x: nat}:
  $ all A l <-> A. n A. x (nth n l = suc x -> x e. A) $;
StepHypRefExpression
2
x IN l <-> E. n nth n l = suc x
3
conv lmem
x e. lmems l <-> E. n nth n l = suc x
4
x e. lmems l -> x e. A <-> E. n nth n l = suc x -> x e. A
5
A. x (x e. lmems l -> x e. A) <-> A. x (E. n nth n l = suc x -> x e. A)
6
conv all, subset
all A l <-> A. x (E. n nth n l = suc x -> x e. A)
9
A. n A. x (nth n l = suc x -> x e. A) <-> A. x A. n (nth n l = suc x -> x e. A)
11
E. n nth n l = suc x -> x e. A <-> A. n (nth n l = suc x -> x e. A)
12
A. x (E. n nth n l = suc x -> x e. A) <-> A. x A. n (nth n l = suc x -> x e. A)
13
9, 12
A. n A. x (nth n l = suc x -> x e. A) <-> A. x (E. n nth n l = suc x -> x e. A)
14
6, 13
all A l <-> A. n A. x (nth n l = suc x -> x e. A)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)