theorem allnth (A: set) (l: nat) {n x: nat}:
$ all A l <-> A. n A. x (nth n l = suc x -> x e. A) $;
Step | Hyp | Ref | Expression |
1 |
|
bitr4 |
(all A l <-> A. x (E. n nth n l = suc x -> x e. A)) ->
(A. n A. x (nth n l = suc x -> x e. A) <-> A. x (E. n nth n l = suc x -> x e. A)) ->
(all A l <-> A. n A. x (nth n l = suc x -> x e. A)) |
2 |
|
lmemnth |
x IN l <-> E. n nth n l = suc x |
3 |
2 |
conv lmem |
x e. lmems l <-> E. n nth n l = suc x |
4 |
3 |
imeq1i |
x e. lmems l -> x e. A <-> E. n nth n l = suc x -> x e. A |
5 |
4 |
aleqi |
A. x (x e. lmems l -> x e. A) <-> A. x (E. n nth n l = suc x -> x e. A) |
6 |
5 |
conv all, subset |
all A l <-> A. x (E. n nth n l = suc x -> x e. A) |
7 |
1, 6 |
ax_mp |
(A. n A. x (nth n l = suc x -> x e. A) <-> A. x (E. n nth n l = suc x -> x e. A)) -> (all A l <-> A. n A. x (nth n l = suc x -> x e. A)) |
8 |
|
bitr4 |
(A. n A. x (nth n l = suc x -> x e. A) <-> A. x A. n (nth n l = suc x -> x e. A)) ->
(A. x (E. n nth n l = suc x -> x e. A) <-> A. x A. n (nth n l = suc x -> x e. A)) ->
(A. n A. x (nth n l = suc x -> x e. A) <-> A. x (E. n nth n l = suc x -> x e. A)) |
9 |
|
alcomb |
A. n A. x (nth n l = suc x -> x e. A) <-> A. x A. n (nth n l = suc x -> x e. A) |
10 |
8, 9 |
ax_mp |
(A. x (E. n nth n l = suc x -> x e. A) <-> A. x A. n (nth n l = suc x -> x e. A)) ->
(A. n A. x (nth n l = suc x -> x e. A) <-> A. x (E. n nth n l = suc x -> x e. A)) |
11 |
|
eexb |
E. n nth n l = suc x -> x e. A <-> A. n (nth n l = suc x -> x e. A) |
12 |
11 |
aleqi |
A. x (E. n nth n l = suc x -> x e. A) <-> A. x A. n (nth n l = suc x -> x e. A) |
13 |
10, 12 |
ax_mp |
A. n A. x (nth n l = suc x -> x e. A) <-> A. x (E. n nth n l = suc x -> x e. A) |
14 |
7, 13 |
ax_mp |
all A l <-> A. n A. x (nth n l = suc x -> x e. A) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)